factorise 1 a2+b2+2bc-2ca-2ab 2 nd x8-y8
Answers
Answered by
9
We can write
a² + b² + 2bc - 2ca - 2ab, as
a² + b² + c² + 2bc - 2ca - 2ab - c²
Now using the identity
a² + b² + c² + 2ab + 2bc + 2ca = (a + b + c)²
Here, 2ca and 2ab are negative and both has a common.
=> a is negative.
Hence,
a² + b² + c² + 2bc - 2ca - 2ab - c²
= (b - a + c)² - (c)²
Now using the identity
a² - b² = (a + b)(a - b)
=> (b - a + c)² - (c)²
= (b - a + c + c)(b - a + c - c)
= (b - a + 2c)(b - a)
2) x^8 - y^8
=> (x⁴)² - (y⁴)²
=> (x⁴ + y⁴)(x⁴ - y⁴)
=> (x⁴ + y⁴)[ (x²)² - (y²)²]
=> (x⁴ + y⁴)(x² + y²)(x² - y²)
=> (x⁴ + y⁴)(x² + y²)(x + y)(x - y)
Hope it helps dear friend ☺️
a² + b² + 2bc - 2ca - 2ab, as
a² + b² + c² + 2bc - 2ca - 2ab - c²
Now using the identity
a² + b² + c² + 2ab + 2bc + 2ca = (a + b + c)²
Here, 2ca and 2ab are negative and both has a common.
=> a is negative.
Hence,
a² + b² + c² + 2bc - 2ca - 2ab - c²
= (b - a + c)² - (c)²
Now using the identity
a² - b² = (a + b)(a - b)
=> (b - a + c)² - (c)²
= (b - a + c + c)(b - a + c - c)
= (b - a + 2c)(b - a)
2) x^8 - y^8
=> (x⁴)² - (y⁴)²
=> (x⁴ + y⁴)(x⁴ - y⁴)
=> (x⁴ + y⁴)[ (x²)² - (y²)²]
=> (x⁴ + y⁴)(x² + y²)(x² - y²)
=> (x⁴ + y⁴)(x² + y²)(x + y)(x - y)
Hope it helps dear friend ☺️
Similar questions