Factorise :-
216a³-2√2b³
Answers
Answered by
1
Answer:
=(6a)
3
−(
2
b)
3
/* By algebraic identity */
\boxed{ \pink { x^{3} - y^{3} = (x-y)(x^{2}+xy+y^{2})}}
x
3
−y
3
=(x−y)(x
2
+xy+y
2
)
= (6a-\sqrt{2}b)[ (6a)^{2} + (6a)(\sqrt{2}b) + (\sqrt{2}b)^{2} ]=(6a−
2
b)[(6a)
2
+(6a)(
2
b)+(
2
b)
2
]
= (6a-\sqrt{2}b)(36a^{2} + 6\sqrt{2}ab + 2b^{2} )=(6a−
2
b)(36a
2
+6
2
ab+2b
2
)
Therefore.,
\red{ 216a^{3} -2\sqrt{2} b^{3} }216a
3
−2
2
b
3
\green {= (6a-\sqrt{2}b)(36a^{2} + 6\sqrt{2}ab + 2b^{2} ) }=(6a−
2
b)(36a
2
+6
2
ab+2b
2
)
Similar questions
English,
17 days ago
Hindi,
17 days ago
Chemistry,
1 month ago
Physics,
1 month ago
Computer Science,
8 months ago