Math, asked by VidushiDhania, 1 year ago

factorise 27 P cube - 1 / 216 - 9 / 2 p square + 1 / 4 P

Answers

Answered by leelagetha
228
hope this answer is helpful
Attachments:
Answered by mysticd
143

Answer:

27p^{3}-\frac{1}{216}-\frac{9p^{2}}{2}+\frac{p}{4}\\=\left( 3p - \frac{1}{6}\right)\left( 3p - \frac{1}{6}\right)\left( 3p - \frac{1}{6}\right)

Step-by-step explanation:

27p^{3}-\frac{1}{216}-\frac{9p^{2}}{2}+\frac{p}{4}

= (3p)^{3}-3\times ( 3p)^{2}\times  \left(\frac{1}{6}\right)+3\times ( 3p)\times  \left(\frac{1}{6}\right)^{2}-\left(\frac{1}{6}\right)^{3}

= \left( 3p - \frac{1}{6}\right)^{3}

/* By algebraic identity :

- 3x²y + 3xy² - = (x-y)³ */

=\left( 3p - \frac{1}{6}\right)\left( 3p - \frac{1}{6}\right)\left( 3p - \frac{1}{6}\right)

Therefore.,

27p^{3}-\frac{1}{216}-\frac{9p^{2}}{2}+\frac{p}{4}\\=\left( 3p - \frac{1}{6}\right)\left( 3p - \frac{1}{6}\right)\left( 3p - \frac{1}{6}\right)

•••♪

Similar questions