Math, asked by plaj83, 1 year ago

Factorise 27x^3+y^3+z^3-9xyz

Answers

Answered by Anonymous
16
Hey !!!!! ^_^

here is your answer

⬇️⬇️⬇️⬇️⬇️

 {27x}^{3}  +  {y}^{3}  +   {z}^{3}  - 9xyz \\  \\   {(3x)}^{3}  +  {(y)}^{3}  +  {(z)}^{3}  - 3.(3x)(y)(z) \\  \\ use \: identity \:  {a}^{3}  +   {b}^{3}   +   {c}^{3}  - 3abc \\  = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) \\  \\ (3x + y + z)( {3x}^{2}  +  {y}^{2}  +  {z}^{2}  - 3xy - yz - 3zx)


I HOPE IT WILL HELP You ☺️

Thank you ☺️
Answered by Hetro
0

Hey! Guys it's your boy het

And it's your answer

27x^3+y^3+z^3-9xyz

(3x)^3+(y)^3+(z)^3-3.(3x)(y)(z)

Using identity a^3+b^3+c^3-3abc

=(A+b+c)(a^2+b^2+c^2-ab-bc-ca)

(3x+y+z)(3x^2+y^2+z^2-3xy-yz-3xz)

Similar questions