Math, asked by shrey7753, 2 months ago

Factorise: (2a+ 3b) ³+ (5c-2a) ³ + (-3b-5c) ³
Please answer fast step by step

Answers

Answered by amansharma264
1

EXPLANATION.

Factorizes the equation.

⇒ (2a + 3b)³ + (5c - 2a)³ + (-3b - 5c)³.

As we know that,

Formula of :

⇒ (x - y)³ = x³ - 3x²y + 3xy² - y³.

⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.

We can write equation as,

⇒ (2a + 3b)³ + (5c - 2a)³ - (3b + 5c)³.

⇒ [(2a)³ + 3(2a)²(3b) + 3(2a)(3b)² + (3b)³] + [(5c)³ - 3(5c)²(2a) + 3(5c)(2a)² - (2a)³] - [(3b)³ + 3(3b)²(5c) + 3(3b)(5c)² + (5c)³].

⇒ [8a³ + 18a²b + 18ab² + 27b³] + [125c³ - 30ac² + 30a²c - 8a³] - [27b³ + 45b²c + 45bc² + 125c³].

⇒ [8a³ + 18a²b + 18ab² + 27b³ + 125c³ - 30ac² + 30a²c - 8a³ - 27b³ - 45b²c - 45bc² - 125c³].

⇒ [8a³ - 8a³ + 27b³ - 27b³ + 125c³ - 125c³ + 18a²b + 18ab² - 30ac² + 30a²c - 45b²c - 45bc²].

⇒ [18a²b + 18ab² - 30ac² + 30a²c - 45b²c - 45bc²].

Answered by Rudranil420
0

Answer:

\red{ \boxed{\texttt{Answer}}}

Factorise :-

⇒ (2a + 3b)³ + (5c - 2a)³ + (-3b - 5c)³.

As we know that,

\implies (x - y)³ = x³ - 3x²y + 3xy² - y³.

\implies (x + y)³ = x³ + 3x²y + 3xy² + y³.

We can write equation as,

\implies (2a + 3b)³ + (5c - 2a)³ - (3b + 5c)³.

\implies {(2a)³ + 3(2a)²(3b) + 3(2a)(3b)² + (3b)³} + {(5c)³ - 3(5c)²(2a) + 3(5c)(2a)² - (2a)³} - {(3b)³ + 3(3b)²(5c) + 3(3b)(5c)² + (5c)³}

\implies (8a³ + 18a²b + 18ab² + 27b³) + (125c³ - 30ac² + 30a²c - 8a³) - (27b³ + 45b²c + 45bc² + 125c³)

\implies (8a³ + 18a²b + 18ab² + 27b³ + 125c³ - 30ac² + 30a²c - 8a³ - 27b³ - 45b²c - 45bc² - 125c³)

\implies (8a³ - 8a³ + 27b³ - 27b³ + 125c³ - 125c³ + 18a²b + 18ab² - 30ac² + 30a²c - 45b²c - 45bc²)

\implies (18a²b + 18ab² - 30ac² + 30a²c - 45b²c - 45bc²)

Similar questions