Math, asked by geetasinghakp2, 9 months ago

factorise 2x^3 - x^2 - 16x +5 using factor theoram

Answers

Answered by denresagnik582
0

Step-by-step explanation:

To factorise

\begin{gathered}2 {x}^{3} - {x}^{2} - 16x + 15 \\ \\\end{gathered}

2x

3

−x

2

−16x+15

The first factor can be find using hit and trial method; for x= 1

\begin{gathered}= 2 {(1)}^{3} - {(1)}^{2} - 16(1) + 15 \\ \\ = 2 - 1 - 16 + 15 \\ \\ = 17 - 17 \\ \\ = 0 \\ \\\end{gathered}

=2(1)

3

−(1)

2

−16(1)+15

=2−1−16+15

=17−17

=0

hence (x-1) is a factor of polynomial.

Now as we know that it's a polynomial of degree three,so it should have three factors.

To find the other to factors

\begin{gathered}x - 1 \: )2 {x}^{3} - {x}^{2} - 16x + 15(2 {x}^{2} + x - 15 \\ \: \: \: \: \: \: \: \: \: \: \: \: 2 {x}^{3} - 2 {x}^{2} \\ \: \: \: \: \: \: \: \: ( -) \: \: \: \: ( + ) \\ \: \: \: \: \: \: \: \: - - - - - \\ \: \: \: \: \: \: \: \: {x}^{2} - 16x \\ \: \: \: \: \: \: \: \: {x}^{2} - x \\ \: \: \: \: \: ( - ) \: \: ( + ) \\ \: \: \: \: \: \: \: - - - - - \\ \: \: \: \: \: \: \: \: \: \: - 15x + 15 \\ \: \: \: \: \: \: \: \: \: - 15x + 15 \\ \: \: \: \: \: \: \: ( + ) \: \: \: ( - ) \\ \: \: \: \: \: \: - - - - - - \\ \: \: \: \: \: \: \: \: \: \: \: 0 \\ \\\end{gathered}

x−1)2x

3

−x

2

−16x+15(2x

2

+x−15

2x

3

−2x

2

(−)(+)

−−−−−

x

2

−16x

x

2

−x

(−)(+)

−−−−−

−15x+15

−15x+15

(+)(−)

−−−−−−

0

So now factorise

\begin{gathered}2 {x}^{2} + x - 15 \\ \\ 2 {x}^{2} + 6x - 5x - 15 \\ \\ 2x(x + 3) - 5(x + 3) \\ \\ (x + 3)(2x - 5) \\ \\\end{gathered}

2x

2

+x−15

2x

2

+6x−5x−15

2x(x+3)−5(x+3)

(x+3)(2x−5)

Thus all three factors of given polynomial are

\begin{gathered}(x + 3)(2x - 5)(x - 1) \\ \\\end{gathered}

(x+3)(2x−5)(x−1)

Hope it helps you.

Similar questions