Math, asked by Adityapsingh2601, 1 year ago

Factorise 2x3 – x2 – 16x + 15 using factor theorem.

Answers

Answered by hukam0685
13

Answer:

(x + 3)(2x - 5)(x - 1)

Step-by-step explanation:

To factorise

2 {x}^{3}  -  {x}^{2}  - 16x + 15 \\  \\

The first factor can be find using hit and trial method; for x= 1

 = 2 {(1)}^{3}  -  {(1)}^{2}  - 16(1) + 15 \\  \\  = 2 - 1 - 16 + 15 \\  \\  = 17 - 17 \\  \\  = 0 \\  \\

hence (x-1) is a factor of polynomial.

Now as we know that it's a polynomial of degree three,so it should have three factors.

To find the other to factors

x - 1 \: )2 {x}^{3}  -  {x}^{2}  - 16x + 15(2 {x}^{2}  + x - 15 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 {x}^{3}  - 2 {x}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \: ( -)  \:  \:  \:  \: ( + ) \\ \:  \:  \:  \:  \:  \:  \:  \:   -  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  {x}^{2}  - 16x \\  \:  \:  \:  \:  \:   \:  \:  \:  {x}^{2}  - x \\    \:  \:  \:  \:  \: (  -  ) \:  \: ( + ) \\  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  -  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 15x + 15 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 15x + 15 \\  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \: ( - ) \\  \:  \:  \:  \:  \:  \:  -  -  -  -  -  -   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 \\  \\

So now factorise

2 {x}^{2}  + x - 15 \\  \\ 2 {x}^{2}  + 6x - 5x - 15 \\  \\ 2x(x + 3) - 5(x + 3) \\  \\ (x + 3)(2x - 5) \\  \\

Thus all three factors of given polynomial are

(x + 3)(2x - 5)(x - 1) \\  \\

Hope it helps you.

Answered by yadavsakshiy
1

Answer:

factors are

(x+3) (2x-5)  (x+1)

Step-by-step explanation:

hopes it will help you

Similar questions