Math, asked by lokendradeswar, 11 months ago

Factorise: 32a3 + 108b3

Answers

Answered by rsherpa510
0

Answer:

i think it would help u

Step-by-step explanation:

32a3+108b3 

Final result :

4 • (2a + 3b) • (4a2 - 6ab + 9b2)

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "b3"   was replaced by   "b^3".  1 more similar replacement(s).

Step by step solution :

Step  1  :

Equation at the end of step  1  :

(32 • (a3)) + (22•33b3)

Step  2  :

Equation at the end of step  2  :

25a3 + (22•33b3)

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   32a3 + 108b3  =   4 • (8a3 + 27b3) 

Trying to factor as a Sum of Cubes :

 4.2      Factoring:  8a3 + 27b3 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :

             (a+b) • (a2-ab+b2)

Proof  : (a+b) • (a2-ab+b2) =

    a3-a2b+ab2+ba2-b2a+b3 =

    a3+(a2b-ba2)+(ab2-b2a)+b3=

    a3+0+0+b3=

    a3+b3

Check :  8  is the cube of  2 

Check :  27  is the cube of   3 

Check :  a3 is the cube of   a1

Check :  b3 is the cube of   b1

Factorization is :

             (2a + 3b)  •  (4a2 - 6ab + 9b2) 

Trying to factor a multi variable polynomial :

 4.3    Factoring    4a2 - 6ab + 9b2 

Try to factor this multi-variable trinomial using trial and error 

 Factorization fails

Final result :

4 • (2a + 3b) • (4a2 - 6ab + 9b2)

Answered by Yashashvityagi
0

Answer:

Hii dude here is your answer

Attachments:
Similar questions