Math, asked by rudransh6057, 10 months ago

Factorise 343x5+27x2y3 +441x4y+189x3y2

Answers

Answered by mysticd
0

 Let \: p(x) = 343x^{5}+27x^{2}y^{3}+441x^{4}y+189x^{3}y^{2}

 = x^{2} (343x^{3}+27y^{3}+441x^{2}y+189xy^{2})\\= x^{2}[(7x)^{3} + (3y)^{3} + 3\times(7x)^{2}y+3\times (7x)\times (3y)^{2} ] \\= x^{2}(7x+3y)^{3}

/* By Algebraic Identity */

 \boxed {\pink {a^{3}+b^{3}+3a^{2}b+3ab^{2} = (a+b)^{3} }}

 = x^{2} (7x+3y)(7x+3y)(7x+3y)

Therefore.,

 \red{ Factors \:of \:343x^{5}+27x^{2}y^{3}+441x^{4}y+189x^{3}y^{2}}

 \green {= x^{2} (7x+3y)(7x+3y)(7x+3y)}

•••♪

Similar questions