Factorise : 3u cube - 4u square - 12u + 16
Answers
Answered by
21
Assumption
p(u) = 3u³ - 4u² - 12u + 16
Here,
(u - 1) or maybe (u + 1) will not factor of p(u)
Then,
Constant (K) = 16
K = |c|
K = 16
Prime factor of 16
= 1 × 2 × 2 × 2 × 2
If :-
u = 2
p(2) = 3(2)³ - 4(2)² - 12(2) + 16
= 24 - 16 - 24 + 16
= 0
(u - 2) is factor of p(u)
Now,
= 3u³ - 4u² - 12u + 16
= 3u³ - 6u² + 2u² - 4u - 8u + 16
= 3u²(u - 2) + 2u(u - 2) - 8(u - 2)
= (u - 2)(3u² + 2u - 8)
= (u - 2)(3u² + 6u - 4u - 8)
= (u - 2){3u(u + 2) - 4(u + 2)}
= (u - 2)(u + 2)(3u - 4)
Similar questions