Math, asked by sobha2, 1 year ago

Factorise
4a2-4b2+4a+1

Answers

Answered by tardymanchester
166

Answer:

The required form is 4a^2-4b^2+4a+1=(2a+1-2b)(2a+1+2b)

Step-by-step explanation:

Given : Expression 4a^2-4b^2+4a+1

To find : Factorize the given expression?

Solution :

4a^2-4b^2+4a+1

Arranging the terms,

=4a^2+4a+1-4b^2

Making the square term,

=[(2a)^2+2\cdot 2\cdot a+(1)^2]-4b^2

The formula of square, a^2+2ab+b^2=(a+b)^2

=(2a+1)^2-4b^2

=(2a+1)^2-(2b)^2

Apply identity, a^2-b^2=(a+b)(a-b)

=(2a+1-2b)(2a+1+2b)

Therefore, The required form is 4a^2-4b^2+4a+1=(2a+1-2b)(2a+1+2b)

Answered by hotelcalifornia
44

Answer:

The factors obtained are (2a+1+2b) and (2a+1-2b).

Solution:

Given equation is 4a^2-4b^2+4a+1

To factorise the given equation, we need to group the above variables into two groups:

\begin{array} { c } { 4 a ^ { 2 } - 4 b ^ { 2 } + 4 a + 1 } \\\\ { = 4 a ^ { 2 } + 4 a + 1 - 4 b ^ { 2 } } \end{array}

The above equation can be regrouped as:

\begin{array} { c } { = ( 2 a ) ^ { 2 } + 2 \times 2 a \times 1 + 1 ^ { 2 } - ( 2 b ) ^ { 2 } } \\\\ { = ( 2 a + 1 ) ^ { 2 } - ( 2 b ) ^ { 2 } } \end{array}

[Since, we know that the formula ( x + y ) ^ { 2 } = x ^ { 2 } + 2 x y + y ^ { 2 }]

= ( 2 a + 1 + 2 b ) ( 2 a + 1 - 2 b )

[Since, we know that the formula x^2+y^2=(x+y)(x-y)]

Hence, 4a^2-4b^2+4a+1 when factorised,  

The factors obtained are (2a+1+2b) and (2a+1-2b).  

Similar questions