Factorise
4x² - 12ax - y² - z² - 2yz + 9a²
Answers
Answer:
(2x - 3a + y + z) (2x - 3a - y -z)
Step-by-step explanation:
(2x)² - 2.2x.3a + (3a)² - (y² + 2.y.z + z²)
(2x - 3a)² - (y + z)²
so applying a²-b² = (a+b)(a-b)
(2x - 3a + y + z) (2x - 3a - y -z)
ATQ, We have to factorize 4x² - 12ax - y² - z² - 2yz + 9a²
.
When we are asked to factorize something, we are basically asked to find it's factors, which when multiplied will give you the polynomial you started with.
| Re-arranging the terms we get:
| Let's try to express 4x² - 12ax + 9a² in the form of (a - b)² = a² - 2ab + b²
| If a = 2x, b = 3a,
| We can write it as (2x - 3a)² since we have (2x)² - 2(2x)(3a) + (3a)²
| Similarly, let a = y & b = z.
| ∴ y² + z² + 2yz can be written as (y + z)²
| Using the identity (a + b)² = a² + 2ab + b² we get:
| We know that a² - b² = (a + b)(a - b)
| Here, let a = 2x - 3a and let b = y + z
Therefore:
∴ Answer: (2x - 3a + y + z) (2x - 3a - y - z)