factorise 512 + 8x^3
Answers
Answered by
2
512 + 8 x^3
= ( 8)^3 + (2x)^3
= (8 + 2x) [ (8)^2 + (2x)^2 - (8)(2x)]
= (2x + 8)( 4x^2 - 16x + 64)
= (2x +8) 4(x^2 - 4x + 16)
= 4 (2x + 8)(x^2 - 4x +16)
= ( 8)^3 + (2x)^3
= (8 + 2x) [ (8)^2 + (2x)^2 - (8)(2x)]
= (2x + 8)( 4x^2 - 16x + 64)
= (2x +8) 4(x^2 - 4x + 16)
= 4 (2x + 8)(x^2 - 4x +16)
abhi569:
Correction in 2 line
Answered by
1
512 + 8x³
(8)³ + (2x)³
We know, (a)³ + (b)³ = (a + b)(a² + b² - ab)
Applying formula, we get,
(8 + 2x) (8² + {2x}² - {{8×2x})
(8 + 2x)(64 + 4x² - 16x)
(8)³ + (2x)³
We know, (a)³ + (b)³ = (a + b)(a² + b² - ab)
Applying formula, we get,
(8 + 2x) (8² + {2x}² - {{8×2x})
(8 + 2x)(64 + 4x² - 16x)
Similar questions