Math, asked by suryanshasati, 1 year ago

Factorise 54x^2+42x^3-30x^4

Answers

Answered by RaviRanjancg
16
54x^2+42x^3-30x^4
=6x^2(9+7x-5x^2)

shadowsabers03: The second degree equation thus obtained can be factorized, bro.
Answered by shadowsabers03
10

Answer:

6x^2(x - \frac{7 + \sqrt{229}}{10})(x - \frac{7 - \sqrt{229}}{10})

Step-by-step explanation:

54x^2 + 42x^3 - 30x^4 \\ \\ = 6x^2(9 + 7x - 5x^2) \\ \\ = 6x^2(-5x^2 + 7x + 9) \\ \\ $Let's factorize$\ -5x^2 + 7x + 9. \\ \\


a = -5\ \ \ ; \ \ \ b = 7\ \ \ ; \ \ \ c = 9 \\ \\ \\ b^2 - 4ac \\ \\ = (7^2) - (4 \times -5 \times 9) \\ \\ = 49 - ( - 180) \\ \\ = 49 + 180 =\ 229 \\ \\


\\ \\ \\ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \\ = \frac{- 7 \pm \sqrt{229}}{-10} \\ \\ = \frac{7 + \sqrt{229}}{10}\ \ \ $OR$ \ \ \ \frac{7 - \sqrt{229}}{10} \\ \\ \\


\\ \\ \\ \therefore\ 6x^2(-5x^2 + 7x + 9) \\ \\ = 6x^2(x - \frac{7 + \sqrt{229}}{10})(x - \frac{7 - \sqrt{229}}{10}) \\ \\ \\ \therefore\ 54x^2 + 42x^3 - 30x^4 = \underline{\underline{6x^2(x - \frac{7 + \sqrt{229}}{10})(x - \frac{7 - \sqrt{229}}{10})}} \\ \\ \\

Similar questions