Math, asked by SOHAMNERURKAR, 9 months ago

. Factorise: 64a³-27b³-144a²b+108ab?
a. (4a – 3b) (4a - 3b) (4a - 3b)
b. (4a + 3b) (4a + 3b) (4a + 3b)
C. (4a + 3b) (4a - 3b)
d. (4a - 3b) (4a - 3b)

Answers

Answered by Glorious31
5

 { \huge{ \fbox{ \tt{ \orange{Question:-}}}}}

Factorise the given question.

64 {a}^{3}  - 27 {b}^{3}  - 144 {a}^{2}b + 108ab

{ \huge{ \fbox{ \tt{ \purple{Answer:-}}}}}

64 {a}^{3} can \: be \: written \: as \: (4a) {}^{3}

27 {b}^{3} can \: be \: written \: as \: (3b) {}^{3}

So , the factorization is :

(4a + 3b) {}^{3}

{ \blue{ \tt{ \underline{ \underline{Verification:-}}}}}

We know the identity :

(x + y) {}^{3}  = x {}^{3}  + y {}^{3}  + 3xy(x + y)

So when we put up the value we get :

64 {a}^{3}  - 27 {b}^{3}  - 144 {a}^{2}b + 108ab

so the answer is option b .

(4a+3b)(4a+3b)(4a+3b) or (4a+3b)^3

Similar questions