Math, asked by malam1349, 9 months ago

factorise :
67^3+33^3
-------------------------
67^2+33^2-67*33

Answers

Answered by RvChaudharY50
12

Question :-

  • Solve (67³ + 33³) / (67² + 33² - 67*33) ?

Formula used :-

  • (a³ + b³) = (a + b)(a² + b² - ab)

Solution :-

(67³ + 33³) / (67² + 33² - 67*33)

using (a³ + b³) = (a + b)(a² + b² - ab) in Numerator we get,

{ (67 + 33)(67² + 33² - 67*33) } / (67² + 33² - 67*33)

→ (67 + 33)

→ 100 (Ans).

Answered by Anonymous
40

 \huge   \mathfrak \red{answer}

 \rm \blue{100}

______________________________

❀ Question:❀

 \sf{ \frac{ {67}^{3} +  {33}^{3}  }{ {67}^{2} +  {33}^{2} - 67 \times 33} }

________________________________

✿step to step explanation✿

_______________________

➷now formula is

 \sf \red{( {a}^{3} +  {b}^{3}) = (a + b)( {a}^{2} +  {b}^{2} - ab}

➷according to the problem we have to used with formula we get

 \sf{ \frac{(67 + 33)( {67}^{2} +  {33}^{2} - 67 \times 33) } { {67}^{2}  +  {33}^{2} - 67 \times 33)} }

so

 \sf{67 + 33}

 \sf \red{100}

Similar questions