Math, asked by megha1385, 1 year ago

Factorise 6a^5 - 21a^4 - 12a^2​

Answers

Answered by Anonymous
26

SOLUTION:-

Given: 6a^5 - 21a^4 - 12a².

6 {a}^{5}  - 21 {a}^{4}  - 12 {a}^{2}  \\  \\  =  > 3 {a}^{2} [2 {a}^{3}  - 7 {a}^{2}  - 4] \\  \\  =  > 3 {a}^{2} [2 {a}^{3}  - 8 {a}^{2}  +  {a}^{2}  - 4] \\  \\  =  > 3 {a}^{2} [2 {a}^{3} ({a}^{2}  - 4) + 1( {a}^{2}  - 4)] \\  \\   =  > 3 {a}^{2} ( {a}^{2}  - 4)(2 {a}^{3}  +1) \\  \\  =  > 3 {a}^{2}(2 {a}^{3}  + 1)(a + 2)(a - 2)

Thank you.


mysticd: verify 4th line
mysticd: 2a⁴ is wrong .It is 2a³
Answered by mysticd
6

Answer:

3a^{2}(2a^{3}-7a^{2}-4)

Step-by-step explanation:

6a^{5}-21a^{4}-12a^{2}\\=3a^{2}(2a^{3}-7a^{2}-4)

Therefore,

6a^{5}-21a^{4}-12a^{2}\\=3a^{2}(2a^{3}-7a^{2}-4)

•••♪

Similar questions