Factorise 6q^2+11q-7
Answers
Your answer6q
2
+11q−7
view step
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
x_{1}
x_{2}
ax^{2}+bx+c=0
6q^{2}+11q-7=0
6q
2
+11q−7=0
view step
ax^{2}+bx+c=0
\frac{-b±\sqrt{b^{2}-4ac}}{2a}
±
q=\frac{-11±\sqrt{11^{2}-4\times 6\left(-7\right)}}{2\times 6}
q=
2×6
−11±
11
2
−4×6(−7)
view step
11
q=\frac{-11±\sqrt{121-4\times 6\left(-7\right)}}{2\times 6}
q=
2×6
−11±
121−4×6(−7)
view step
-46
q=\frac{-11±\sqrt{121-24\left(-7\right)}}{2\times 6}
q=
2×6
−11±
121−24(−7)
view step
-24-7
q=\frac{-11±\sqrt{121+168}}{2\times 6}
q=
2×6
−11±
121+168
view step
121168
q=\frac{-11±\sqrt{289}}{2\times 6}
q=
2×6
−11±
289
view step
289
q=\frac{-11±17}{2\times 6}
q=
2×6
−11±17
view step
26
q=\frac{-11±17}{12}
q=
12
−11±17
view step
q=\frac{-11±17}{12}
±-1117
q=\frac{6}{12}
q=
12
6
view step
\frac{6}{12}=0.5
6
q=\frac{1}{2}
q=
2
1
view step
q=\frac{-11±17}{12}
±17-11
q=\frac{-28}{12}
q=
12
−28
view step
\frac{-28}{12}\approx -2.333333333
4
q=-\frac{7}{3}
q=−
3
7
view step
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
\frac{1}{2}=0.5
x_{1}
-\frac{7}{3}\approx -2.333333333
x_{2}
6q^{2}+11q-7=6\left(q-\frac{1}{2}\right)\left(q-\left(-\frac{7}{3}\right)\right)
6q
2
+11q−7=6(q−
2
1
)(q−(−
3
7
))
view step
p-\left(-q\right)p+q
6q^{2}+11q-7=6\left(q-\frac{1}{2}\right)\left(q+\frac{7}{3}\right)
6q
2
+11q−7=6(q−
2
1
)(q+
3
7
)
view step
\frac{1}{2}=0.5
q
6q^{2}+11q-7=6\times \left(\frac{2q-1}{2}\right)\left(q+\frac{7}{3}\right)
6q
2
+11q−7=6×(
2
2q−1
)(q+
3
7
)
view step
\frac{7}{3}\approx 2.333333333
q
6q^{2}+11q-7=6\times \left(\frac{2q-1}{2}\right)\times \left(\frac{3q+7}{3}\right)
6q
2
+11q−7=6×(
2
2q−1
)×(
3
3q+7
)
view step
\frac{2q-1}{2}
\frac{3q+7}{3}
6q^{2}+11q-7=6\times \left(\frac{\left(2q-1\right)\left(3q+7\right)}{2\times 3}\right)
6q
2
+11q−7=6×(
2×3
(2q−1)(3q+7)
)
view step
23
6q^{2}+11q-7=6\times \left(\frac{\left(2q-1\right)\left(3q+7\right)}{6}\right)
6q
2
+11q−7=6×(
6
(2q−1)(3q+7)
)
view step
666
6q^{2}+11q-7=\left(2q-1\right)\left(3q+7\right)
6q
2
+11q−7=(2q−1)(3q+7)