Math, asked by sssbabu1970, 10 months ago

Factorise: 6x"2 + 5x - 6 using factor theorem pls say correctly......and fast...

Answers

Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ factorised \ form \ is \ (2x+3)(3x-2)}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{6x^{2}+5x-6}}

\sf\pink{To \ find:}

\sf{Factorised \ form.}

\sf\blue{Explanation}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{6x^{2}+5x-6}}

\sf{Here, \ a=6, \ b=5 \ and \ c=-6}

\sf{a\times \ c=6(-6)=-36}

\sf{Middle \ term \ should \ be \ split \ such}

\sf{that \ it's \ multiplication \ is \ -36 \ and}

\sf{addition \ is \ 5.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{6x^{2}+5x-6}}

\sf{\implies{6x^{2}+9x-4x-6}}

\sf{\implies{3x(2x+3)-2(2x+3)}}

\sf{\implies{(2x+3)(3x-2)}}

\sf\purple{\tt{\therefore{The \ factorised \ form \ is \ (2x+3)(3x-2)}}}

Answered by TheSentinel
53

\color{darkblue}\underline{\underline{\sf Corrected \ Question:}}

\rm{Factorise \ following \ quadratic \ polynomial  }

\rm{using \ factor \ theorem}

6 {x}^{2}  + 5x - 6

_________________________________________

\color{orange}\underline{\underline{\sf Answer:}}

\sf\underline\pink{The \ Factorised \ form \ is :}

\sf\underline\pink{(3x - 2)(2x + 3)}

_________________________________________

\sf\large\underline\green{Given:}

\rm{Quadratic \ Polynomial \ is : \ 6 {x}^{2}  + 5x - 6 }

_________________________________________

\sf\large\underline\purple{To  \ Find :}

\rm{Factorised \ Form}

_________________________________________

\color{blue}\underline{\underline{\sf Solution:}}

\rm{Given \ quadratic \ polynomial \ is}

6 {x}^{2}  + 5x - 6

\rm{now, \ we \ have \ to \ find \ terms \ in \ which }

\rm{multiplication \ of \ first \ and \ last \ term}

\rm{is \ -36 \ and \ addition \ of \ them \ is \ 5}

6 {x}^{2}  + 5x - 6

6 {x}^{2}  + 9x - 4x - 6

3x(2x + 3) - 2(2x + 3)

(3x - 2)(2x + 3)

\sf\underline\pink{The \ Factorised \ form \ is :}

\sf\underline\pink{(3x - 2)(2x + 3)}

_________________________________________

\rm\purple{Hope \ it \ helps \ :))}

Similar questions