Math, asked by ahilasujita, 7 months ago

factorise -8a³+36a²-54a+27​

Answers

Answered by Anonymous
8

\huge{\mathbb{\red{ANSWER:-}}}

\sf{-8a^3 + 36a^2 - 54a + 27}

-(\sf{8a^3 - 36a^2 + 54a - 27})

-(\sf{8a^3 - 27 - 36a^2 + 54a})

-(\sf{(2a)^3 - (3)^3 - 18a(2a - 3)})

-[\sf{(2a)^3 - (3)^3 - 3(6a)(2a - 3)}]

-[\sf{(2a)^3 - (3)^3 - 3(2a)(3)(2a - 3)}]

We Know that -

\small\boxed{\sf{a^3 - b^3 - 3ab(a - b)=(a - b)^3}}

So ,

-(2a - 3)^3

other important algebraic formulas:-

(1)\sf{(a^3 + b^3) =(a + b)(a^2 - ab + b^2)}

(2)\sf{(a^3 - b^3) =(a - b)(a^2 + ab + b^2)}

(3)\sf{(a + b)^3 =a^3 + b^3 + 3ab(a + b)}

(4)\sf{(a^2 - b^2) =(a + b)(a - b)}

(5)\sf{if \: (a + b + c) = 0}

\sf{then, \: (a^3+b^3+c^3)=3abc}

Similar questions