factorise... 8a³-b³-4ax+2bx
Answers
Answer:
( 2a - b ) ( 4a² + b² + 2ab - 2x )
Step-by-step explanation:
Given---> 8a³ - b³ - 4ax + 2bx
To find---> Factors of given expression
Solution---> We know that
x³ - y³ = ( x - y ) ( x² + y² + xy )
Now returning to original problem we get,
8a³ - b³ - 4ax + 2bx
= ( 2a )³ - ( b )³ - 4ax + 2bx
Applying above identity , we get,
= ( 2a - b ) { ( 2a )² + ( b )² + 2a b } - 2x ( 2a - b )
= ( 2a - b ) ( 4a² + b² + 2ab ) - 2x ( 2a - b )
Taking ( 2a - b ) common from both terms
= ( 2a - b ) ( 4a² + b² + 2ab - 2x )
Additional information--->
1) a³ + b³ = ( a + b ) ( a² + b² - ab )
2) ( a + b )³ = a³ + b³ + 3ab ( a + b )
3) ( a - b )³ = a³ - b³ - 3ab ( a - b )
4) a² - b² = ( a + b ) ( a - b )
5) ( a + b )² = a² + b² + 2ab
6) ( a - b )² = a² + b² - 2ab
Good Morning !!
Have a nice day
Step-by-step explanation:
8a³– b³– 4ax + 2bx
= (2a)³ – (b)³ – 2x(2a – b)
We know, a³ – b³ = (a – b)(a² + ab + b²)
= (2a – b) ((2a)² + 2a.b + (b)²) – 2x(2a – b)
= (2a – b) (4a² + 2ab + b²) – 2x(2a – b)