Factorise 8p^3 +12/5p^2 + 6/25p + 1/125
Answers
Answer:
Step-by-step explanation:
X= -0.1
Answer:
Hii mate
Factors \:of \\8p^{3}+\frac{12}{5} p^{2}+\frac{6}{25}p+\frac{1}{125}\\=\left(2p+\frac{1}{5}\right)\left(2p+\frac{1}{5}\right)\left(2p+\frac{1}{5}\right)
Step-by-step explanation:
Factorisation \: of \:the\\expression :\\8p^{3}+\frac{12}{5} p^{2}+\frac{6}{25}p+\frac{1}{125}\\=\big(2p\big)^{3}+3\times \big(2p\big)^{2}\times \frac{1}{5}+3\times (2p)\times \big(\frac{1}{5}\big)^{2}+\big(\frac{1}{5}\big)^{3}\\=\left(2p+\frac{1}{5}\right)^{3}
/* By algebraic identity:
a³+3a²b+3ab²+b³ = (a+b)³ */
=\left(2p+\frac{1}{5}\right)\left(2p+\frac{1}{5}\right)\left(2p+\frac{1}{5}\right)
Therefore,
Factors<strong> </strong>\:of \\8p^{3}+\frac{12}{5} p^{2}+\frac{6}{25}p+\frac{1}{125}\\=\left(2p+\frac{1}{5}\right)\left(2p+\frac{1}{5}\right)\left(2p+\frac{1}{5}\right)
•••♪
Step-by-step explanation: