Factorise 9(3x +2)^2 - 4(2x-1)^2
Answers
Answered by
0
The factors of the expression 9(3x +2)^2 - 4(2x-1)^2 are (13x+4)(5x+8)
Given:
9(3x +2)^2 - 4(2x-1)^2
To find:
Factors of 9(3x +2)^2 - 4(2x-1)^2.
Solution:
9(3x +2)^2 - 4(2x-1)^2
Using (a+b)²= a²+b²+2ab
and (a-b)²= a²+b²-2ab
⇒ 9(9x²+4+12x)-4(4x²+1-4x)
⇒ (81x²+36+108x)-16x²-4+16x
⇒ 65x²+124x+32
⇒ 65x²+104x+20x+32
⇒ 13x(5x+8)+4(5x+8)
⇒ (13x+4)(5x+8)
Thus, the factors of 9(3x+2)²-4(2x-1)² are (13x+4)(5x+8)
#SPJ1
Answered by
0
Step-by-step explanation:
same doubt haha lol hahahah
Similar questions