Math, asked by pankajtinwal, 1 year ago

Factorise 9x square y square-16

Answers

Answered by pulakmath007
17

SOLUTION

TO FACTORISE

 \sf{9 {x}^{2} {y}^{2}   - 16}

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 \sf{ {a}^{2}  -  {b}^{2}  = (a + b)(a - b)}

EVALUATION

 \sf{9 {x}^{2} {y}^{2}   - 16}

 \sf{ =  {(3xy)}^{2} -  {(4)}^{2}  }

 \sf{ = (3xy + 4)(3xy - 4)} \: \:  \:  \:  \:  \:  (using \: above \: identity \: )

FINAL ANSWER

 \boxed{ \:  \sf{9 {x}^{2} {y}^{2}   - 16} = (3xy + 4)(3xy - 4) \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. if 3√x+(3√3375) ^3 =17 , then find the cube root of x-1026 is equal to

https://brainly.in/question/28465037

Answered by MaheswariS
7

\textbf{Given:}

\mathsf{9x^2y^2-16}

\textbf{To find:}

\mathsf{Factors\;of\;9x^2y^2-16}

\textbf{Solution:}

\boxed{\begin{minipage}{8cm}$\textsf{The method of writing a polynomial into product of}\\\\\textsf{its factors is called factorization}$\end{minipage}}

\mathsf{Consider,}

\mathsf{9x^2y^2-16}

\mathsf{=(3xy)^2-4^2}

\mathsf{Using\;identity,\;\bf\,a^2-b^2=(a-b)(a+b)}

\mathsf{=(3xy-4)(3xy+4)}

\implies\boxed{\mathsf{9x^2y^2-16=(3xy-4)(3xy+4)}}

\textbf{Find more:}

X2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404

Factorise 16 a square minus 25 B square minus 8 A plus one

https://brainly.in/question/15127396

Factorize 9x²+12y-y²-36​

https://brainly.in/question/23700201

Similar questions