Factorise: a^12 x^4 – a^4 x^12.
Answers
Answered by
1
Step-by-step explanation:
Given:-
a^12 x^4 – a^4 x^12.
To find:-
Factorise: a^12 x^4 – a^4 x^12.
Solution:-
Given expression is a^12 x^4 – a^4 x^12
=>(a^4×a^8×x^4)-(a^4×x^4×x^8)
=>a^4×x^4(a^8-x^8)
=>a^4 x^4[(a^4)^2-(x^4)^2]
=>a^4 x^4[(a^4+x^4)(a^4-x^4)]
=>a^4 x^4[(a^4+x^4){(a^2)^2-(x^2)^2}]
=>a^4 x^4[(a^4+x^4)(a^2+x^2)(a^2-x^2)]
=>a^4 x^4[(a^4+x^4)(a^2+x^2)(a+x)(a-x)]
Answer:-
Factorization of expression a^12 x^4 – a^4 x^12
=a^4 x^4 (a+x)(a-x)(a^2+x^2)(a^4+x^4)
Used formula:-
- (a+b)(a-b)=a^2-b^2
Similar questions