Factorise: a) 4x² + 20x + 25 b) 1 + 64x³ *
Answers
Step-by-step explanation:
It is given that,
{4x}^{2} + 20x + 254x
2
+20x+25
We have to factorise it using the method called splitting of middle terms.
{4x}^{2} + (10 + 10)x + 254x
2
+(10+10)x+25
{4x}^{2} + 10x + 10x + 254x
2
+10x+10x+25
Now find the common term.
2x(2x + 5) + 5(2x + 5)2x(2x+5)+5(2x+5)
(2x + 5)(2x + 5)(2x+5)(2x+5)
Hence the factorization is done.
Now,
To find the value of x, equate with zero.
(2x + 5) = 0(2x+5)=0
2x = ( - 5)2x=(−5)
x = \frac{( - 5)}{2}x=
2
(−5)
please follow me
Answer:
4 {x}^{2} + 20x + 254x
2
+20x+25
By middle term splitting,
4 {x}^{2} + (10 + 10)x + 254x
2
+(10+10)x+25
{4x}^{2} + 10x + 10x + 254x
2
+10x+10x+25
2x(2x + 5) + 5(2x + 5)2x(2x+5)+5(2x+5)
(2x + 5)(2x + 5)(2x+5)(2x+5)
[ OR ]
4 {x}^{2} + 20x + 254x
2
+20x+25
{(2x)}^{2} + 2(2x)(5) + {(5)}^{2}(2x)
2
+2(2x)(5)+(5)
2
Using identity :
( a + b)² = a² + 2ab + b²
{(2x + 5)}^{2}(2x+5)
2
(2x + 5)(2x + 5)(2x+5)(2x+5)
Hope it helps you.. ☺️☺️
# Be Brainly
pls mark me the brainliest