Math, asked by rp4115854, 6 months ago

Factorise: a) 4x² + 20x + 25 b) 1 + 64x³ *​

Answers

Answered by amitdhakad750
2

Step-by-step explanation:

It is given that,

{4x}^{2} + 20x + 254x

2

+20x+25

We have to factorise it using the method called splitting of middle terms.

{4x}^{2} + (10 + 10)x + 254x

2

+(10+10)x+25

{4x}^{2} + 10x + 10x + 254x

2

+10x+10x+25

Now find the common term.

2x(2x + 5) + 5(2x + 5)2x(2x+5)+5(2x+5)

(2x + 5)(2x + 5)(2x+5)(2x+5)

Hence the factorization is done.

Now,

To find the value of x, equate with zero.

(2x + 5) = 0(2x+5)=0

2x = ( - 5)2x=(−5)

x = \frac{( - 5)}{2}x=

2

(−5)

please follow me

Answered by rudra6752
0

Answer:

4 {x}^{2} + 20x + 254x

2

+20x+25

By middle term splitting,

4 {x}^{2} + (10 + 10)x + 254x

2

+(10+10)x+25

{4x}^{2} + 10x + 10x + 254x

2

+10x+10x+25

2x(2x + 5) + 5(2x + 5)2x(2x+5)+5(2x+5)

(2x + 5)(2x + 5)(2x+5)(2x+5)

[ OR ]

4 {x}^{2} + 20x + 254x

2

+20x+25

{(2x)}^{2} + 2(2x)(5) + {(5)}^{2}(2x)

2

+2(2x)(5)+(5)

2

Using identity :

( a + b)² = a² + 2ab + b²

{(2x + 5)}^{2}(2x+5)

2

(2x + 5)(2x + 5)(2x+5)(2x+5)

Hope it helps you.. ☺️☺️

# Be Brainly

pls mark me the brainliest

Similar questions