Factorise (a + b)whole cube + (a - b)whole cube
Answers
Answered by
1
Hey !
Here is your answer !!
_________________
( a + b)3 + ( a - b )3
a3 + b3 = ( a + b ) ( a2 + b2 - ab )
( a + b + a - b ) ( [ a +b ]2 + [ a - b ]2 - [ (a + b ) × ( a - b )]
2a [ a2 + b2 + 2ab + a2 + b2 - 2ab - [ a2 -ab +ab -b2]
2a [ 2a2 + 2b2 -a2 +b2]
2a [ a2 +3b2]
Here is your answer !!
_________________
( a + b)3 + ( a - b )3
a3 + b3 = ( a + b ) ( a2 + b2 - ab )
( a + b + a - b ) ( [ a +b ]2 + [ a - b ]2 - [ (a + b ) × ( a - b )]
2a [ a2 + b2 + 2ab + a2 + b2 - 2ab - [ a2 -ab +ab -b2]
2a [ 2a2 + 2b2 -a2 +b2]
2a [ a2 +3b2]
Anonymous:
Wait ! i think it is wrong
Answered by
0
hi mate,
Answer:
(a+b)^3 + (a-b)^3 …. Expand cubic function.
a^3 - b^3 =
(a^3 + 3 a^2 *b + 3 a *b^2 + b^3)
- (a^3 - 3 a^2*b + 3 a * b^2 - b^3)
=6 * a^2* b + 2 * b ^3
= 2*b *(b^2 + 3* a^2).
i hope it helps you.
Similar questions