Math, asked by lsingh158, 4 months ago

factorise
a⁴- b⁴
p⁴-81
x⁴-(y+z)⁴
x⁴-(x-z)⁴

Answers

Answered by sahag717
0

Answer:

i)a

4

−b

4

=(a

2

−b

2

)(a

2

+b

2

)=(a+b)(a−b)(a

2

+b

2

)

=(a+b)(a

2

+b

2

)(a−b)

ii)p

4

−81

=(p

2

−9)(p

2

+9)

=(p+3)(p−3)(p

2

+9)

iii)x

4

−(y+z)

4

=(x

2

−(y+z)

2

)(x

2

+(y+z)

2

)

=(x+y+z)(x−y−z)(x

2

+(y+z)

2

)

iv)x

4

−(x−z)

4

=(x

2

−(x−z)

2

)(x

2

+(x−z)

2

)

=(x+x−z)(x−x+z)(x

2

+(x−z)

2

)

=(2x−z)(z)(x

2

+(x−z)

2

)

v)a

4

−2a

2

b

2

+b

4

=a

4

−a

2

b

2

−a

2

b

2

+b

4

=a

2

(a

2

−b

2

)−b

2

(a

2

−b

2

)

=(a

2

−b

2

)

2

=(a+b)

2

(a−b)

2

Step-by-step explanation:

this is the answer bro.

hope it's help you.

Answered by CloseEncounter
21

Factorise

i) a⁴- b⁴

ii)p⁴-81

iii)x⁴-(y+z)⁴

iv)x⁴-(x-z)⁴

step by step explanation

i

\sf=a⁴-b⁴

\sf=(a²)²-(b²)²

 \sf=(a²-b²)(a²+b²)

\sf=(a+b)(a-3)(a²+b²)

ii

\sf=p⁴-3⁴

\sf=(p²)²-(3²)²

 \sf=(p²-3²)(p²+3²)

\sf=(p+3)(p-3)(p²+9)

iii

\sf{ =  x⁴-(y+z)⁴     }

\sf{ =  x⁴-(y+z)⁴     }

\sf{ =   (x²)²-((y+z)²)²    }

\sf{ =   (x²-(y+z)²)(x²+(y+z)²)    }

\sf{  =   (x²-(y+z)²)(x²+(y+z)²)   }

\sf{  = (x+y+z)(x²+y²+z²+2yz )  }

iv

\sf{=   x⁴-(x-z)⁴             }

\sf{=     (x²)²-((x-z)²)²           }

\sf{=  (x²-(x-z)²)(x²+(x-z)²)              }

\sf{=      (x+x-z)(x-x+z)(x²+x²+z²-2xz)          }

\sf{=         (2x-z)(z)(2x²+z²-2xz)       }

\sf{=   (2xz-z²)(2x²+z²-2xz)             }

\\ \\ \sf{For\ more\ information }

\\ \\ \sf(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

\sf(a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab

\sf(a + b)(a - b)  =  {a}^{2}   -   {b}^{2}

\sf(a + b + c)^{2}  =  {a}^{2}  +  {b}^{2}  + {c}^{2}+ 2ab + 2bc + 2ca

\sf(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)

\sf(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)

\sf a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)

\sf a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)

Similar questions