factorise:ab(x^2+y^2)+xy(a^2+b^2)
Answers
Answer:
ab ( x^2 + y^2) - xy ( a^2 + b^2)
= abx^2 + aby^2 - xya^2 - xyb^2
= abx^2 - xya^2 + aby^2 - xyb^2
= ax ( bx - ay) + by ( ay - bx)
= ax ( bx - ay) - by ( bx - ay)
= (ax - by) (bx - ay)
MARK AS BRAINLIEST
PLZ FOLLOW ME
Step-by-step explanation:
answer:-
ab ( x^2 + y^2) - xy ( a^2 + b^2)
ab ( x^2 + y^2) - xy ( a^2 + b^2)= abx^2 + aby^2 - xya^2 - xyb^2
ab ( x^2 + y^2) - xy ( a^2 + b^2)= abx^2 + aby^2 - xya^2 - xyb^2= abx^2 - xya^2 + aby^2 - xyb^2
ab ( x^2 + y^2) - xy ( a^2 + b^2)= abx^2 + aby^2 - xya^2 - xyb^2= abx^2 - xya^2 + aby^2 - xyb^2= ax ( bx - ay) + by ( ay - bx)
ab ( x^2 + y^2) - xy ( a^2 + b^2)= abx^2 + aby^2 - xya^2 - xyb^2= abx^2 - xya^2 + aby^2 - xyb^2= ax ( bx - ay) + by ( ay - bx)= ax ( bx - ay) - by ( bx - ay)
ab ( x^2 + y^2) - xy ( a^2 + b^2)= abx^2 + aby^2 - xya^2 - xyb^2= abx^2 - xya^2 + aby^2 - xyb^2= ax ( bx - ay) + by ( ay - bx)= ax ( bx - ay) - by ( bx - ay)= (ax - by) (bx - ay)
FOLLOW ME
@hopeless