Factorise completely: 256x17 y2 – xy2.
Answers
Answer:
xy²(16x⁸+1) (4x⁴+1) (2x²+1) (2x²-1 )
Step-by-step explanation:
Given----> 256 x¹⁷ y² - x y²
To find ---> Factors of given expression
Solution----> We know that,
a² - b² = ( a + b ) ( a - b ) and
16² = 256
4² = 16
2² = 4
Now,
256x¹⁷ y² - xy² = x y² ( 256 x¹⁶ - 1 )
= xy² { ( 16 x⁸ )² - ( 1 )² }
Applying above identity , we get,
= xy² ( 16x⁸ + 1 ) ( 16x⁸ - 1 )
= xy² ( 16x⁸ + 1 ) { ( 4x⁴ )² - ( 1 )² }
Applying above identity, we get,
= xy² ( 16x⁸ + 1 ) ( 4x⁴ + 1 ) ( 4x⁴ - 1 )
= xy² ( 16x⁸ + 1 ) ( 4x⁴ + 1 ) { (2x²)² - ( 1 )² }
Again applying above identity, we get,
=xy² (16x⁸+1 ) (4x⁴+1) (2x²+1 ) ( 2x² - 1 )
#Answerwithquality
#BAL
Answer:
Step-by-step explanation:
Given----> 256 x¹⁷ y² - x y²
To find ---> Factors of given expression
Solution----> We know that,
a² - b² = ( a + b ) ( a - b ) and
16² = 256
4² = 16
2² = 4
Now,
256x¹⁷ y² - xy² = x y² ( 256 x¹⁶ - 1 )
= xy² { ( 16 x⁸ )² - ( 1 )² }
Applying above identity , we get,
= xy² ( 16x⁸ + 1 ) ( 16x⁸ - 1 )
= xy² ( 16x⁸ + 1 ) { ( 4x⁴ )² - ( 1 )² }
Applying above identity, we get,
= xy² ( 16x⁸ + 1 ) ( 4x⁴ + 1 ) ( 4x⁴ - 1 )
= xy² ( 16x⁸ + 1 ) ( 4x⁴ + 1 ) { (2x²)² - ( 1 )² }
Again applying above identity, we get,
=xy² (16x⁸+1 ) (4x⁴+1) (2x²+1 ) ( 2x² - 1 )
e