factorise each of the following using identities 8x^3-(2x-y)^3
Answers
Answered by
4
Given, 8x^3 - (2x - y) ^3
= (2x) ^3 - (2x - y) ^3
Using the formula:
a^3 - b^3= (a - b)(a^2 + ab + b^2) -------- eq.(1)
Putting the value of a = 2x, b = (2x – y) in the above formula; we get
= (2x – (2x+y)) {(2x) ^2 - 2x*(2x - y) + (2x - y) ^2}
= y {(4x^2 - 4x^2 + 2xy + 4x^2 - 4xy + y^2)}
= y (4x^2 - 2xy + y^2)
Therefore, factorized form of the given problem is y (4x^2 - 2xy + y^2).
= (2x) ^3 - (2x - y) ^3
Using the formula:
a^3 - b^3= (a - b)(a^2 + ab + b^2) -------- eq.(1)
Putting the value of a = 2x, b = (2x – y) in the above formula; we get
= (2x – (2x+y)) {(2x) ^2 - 2x*(2x - y) + (2x - y) ^2}
= y {(4x^2 - 4x^2 + 2xy + 4x^2 - 4xy + y^2)}
= y (4x^2 - 2xy + y^2)
Therefore, factorized form of the given problem is y (4x^2 - 2xy + y^2).
Answered by
5
Given an algebraic equation :
.
8x^3 - ( 2x - y )^3
.
=( 2x )^3 - ( 2x - y )^3
.
use identity:
----------------
.
a^3 - b^3
------------
.
= ( a - b ) ( a^2 + ab + b^2 )
.
here we have ,
.
a = 2x , b = (2x - y )
so now put the value of a and b in above identity :
.
(2x)^3 - ( 2x - y )^3
.
= [2x - (2x - y)] [( 2x)^2 + 2x ( 2x - y ) + (2x- y)^2]
.
= (2x - 2x + y)( 4x^2 + 4x^2 - 2xy + 4x^2 + y^2 - 4xy )
.
= y ( 12x^2 + y^2 - 6xy )
.
= y [ 12x^2 + y ( y - 6x ) ]
-------------------------------------------
.
8x^3 - ( 2x - y )^3
.
=( 2x )^3 - ( 2x - y )^3
.
use identity:
----------------
.
a^3 - b^3
------------
.
= ( a - b ) ( a^2 + ab + b^2 )
.
here we have ,
.
a = 2x , b = (2x - y )
so now put the value of a and b in above identity :
.
(2x)^3 - ( 2x - y )^3
.
= [2x - (2x - y)] [( 2x)^2 + 2x ( 2x - y ) + (2x- y)^2]
.
= (2x - 2x + y)( 4x^2 + 4x^2 - 2xy + 4x^2 + y^2 - 4xy )
.
= y ( 12x^2 + y^2 - 6xy )
.
= y [ 12x^2 + y ( y - 6x ) ]
-------------------------------------------
Anonymous:
Amazing
Similar questions
Computer Science,
7 months ago
English,
7 months ago
Geography,
1 year ago
Science,
1 year ago
Geography,
1 year ago