Math, asked by waniaayushi03, 3 days ago

factorise
I) m² - (b-c)²​

Answers

Answered by sautik56
0

m² - (b-c)²

m² - b² - c² + 2bc

Answered by mathdude500
2

Answer:

\boxed{ \bf\:{m}^{2} -  {(b - c)}^{2} = (m + b  -  c) \: (m - b  +  c) \: }  \\

Step-by-step explanation:

Given expression is

\sf \:  {m}^{2} -  {(b - c)}^{2}  \\

We know,

\boxed{ \sf\: {x}^{2} -  {y}^{2} = (x + y)(x - y) \: } \\

So, using this algebraic identity, we get

\sf \:  =  \: [m + (b  -  c)] \: [m - (b - c)] \\

\sf \:  =  \: (m + b  -  c) \: (m - b  +  c)\\

Hence,

\implies\boxed{ \bf\:{m}^{2} -  {(b - c)}^{2} = (m + b  -  c) \: (m - b  +  c) \: }  \\

\rule{190pt}{2pt}

Additional Information:

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions