Factorise : r³(s - t)³ + s³(t - r)³ + t³(r - s)³…
Answers
Answered by
31
if a+b+c=0
then a^3 + b^3 + c^3 = 3abc
here a equals to r(s-t)
b equals to s(t-r) and c equals to t(r-s)
as..a^3 + b^3 + c^3 = 3abc
=3rst(s-t)(r-s)(t-r)
then a^3 + b^3 + c^3 = 3abc
here a equals to r(s-t)
b equals to s(t-r) and c equals to t(r-s)
as..a^3 + b^3 + c^3 = 3abc
=3rst(s-t)(r-s)(t-r)
GovindKrishnan:
How it is equal to zero??? Plz prove it is equal to 0…
Answered by
66
r(s-t) + s(t-r) + t(r-s)
=rs -rt +st -sr +tr -ts
=0
∵a+b+c= 0
∴a³+b³+c³ = 3abc
r³(s-t)³ +s³(t-r)³ +t³(r-s)³ = 3[r(s-t)][s(t-r)][t(r-s)]
=3rst(s-t)(t-r)(r-s)
=rs -rt +st -sr +tr -ts
=0
∵a+b+c= 0
∴a³+b³+c³ = 3abc
r³(s-t)³ +s³(t-r)³ +t³(r-s)³ = 3[r(s-t)][s(t-r)][t(r-s)]
=3rst(s-t)(t-r)(r-s)
Similar questions