factorise
Answers
Answered by
6
a^3 - b^3 + 1 + 3ab
= (a)^3 + (-b)^3 + (1)^3 - 3(a) (-b) (1)
= ( a - b + 1) [ a^2 + b^2 + 1 - (a) (-b) - (-b) (1) - (1)(a)]
= (a-b + 1) (a^2 + b^2 + 1 + ab + b - a)
= (a)^3 + (-b)^3 + (1)^3 - 3(a) (-b) (1)
= ( a - b + 1) [ a^2 + b^2 + 1 - (a) (-b) - (-b) (1) - (1)(a)]
= (a-b + 1) (a^2 + b^2 + 1 + ab + b - a)
shikhar40:
thanks bro
Answered by
0
a^3 - b^3 + 1 + 3ab
= (a)^3 + (-b)^3 + (1)^3 - 3(a) (-b) (1)
= ( a - b + 1) [ a^2 + b^2 + 1 - (a) (-b) - (-b) (1) - (1)(a)]
= (a-b + 1) (a^2 + b^2 + 1 + ab + b - a)
Similar questions