Factorise :
by splitting of middle terms
Answers
Answered by
2
Given Equation is x^8 - y^8
= > (x^4)^2 - (y^4)^2
We know that a^2 - b^2 = (a + b)(a - b)
= > (x^4 + y^4)(x^4 - y^4)
= > (x^4 + y^4)((x^2)^2 - (y^2)^2))
= > (x^4 + y^4)((x^2 + y^2)(x^2 - y^2))
= > (x^4 + y^4)(x^2 + y^2)(x + y)(x - y).
Hope this helps!
= > (x^4)^2 - (y^4)^2
We know that a^2 - b^2 = (a + b)(a - b)
= > (x^4 + y^4)(x^4 - y^4)
= > (x^4 + y^4)((x^2)^2 - (y^2)^2))
= > (x^4 + y^4)((x^2 + y^2)(x^2 - y^2))
= > (x^4 + y^4)(x^2 + y^2)(x + y)(x - y).
Hope this helps!
siddhartharao77:
:-)
Answered by
1
(x^8) - (y^8)
=> (x⁴)² - (y⁴)²
-------------------
By formula,
a²-b² = (a+b) (a-b)
----------------------
=> (x⁴)² - (y⁴)²
=> (x⁴ + y⁴) (x⁴ - y⁴)
=> (x⁴ + y⁴) [ (x²)² - (y²)²]
=> (x⁴ + y⁴) [(x² + y²) (x²-y²) ]
=> (x⁴ + y⁴) (x² + y²) (x + y) (x - y)
I hope this will help you
(-:
=> (x⁴)² - (y⁴)²
-------------------
By formula,
a²-b² = (a+b) (a-b)
----------------------
=> (x⁴)² - (y⁴)²
=> (x⁴ + y⁴) (x⁴ - y⁴)
=> (x⁴ + y⁴) [ (x²)² - (y²)²]
=> (x⁴ + y⁴) [(x² + y²) (x²-y²) ]
=> (x⁴ + y⁴) (x² + y²) (x + y) (x - y)
I hope this will help you
(-:
Similar questions