factorise the following:
64(a)^6-(b)^6
Answers
Answered by
42
Hey Juhi !
Here is your solution :
= 64(a)^6 - (b)^6
= ( 2 )^6 ( a )^6 - ( b )^6
Using identity :
[ a^m × b^m = ( ab )^m ]
= ( 2a )^6 - ( b )^6
= [ ( 2a )^3 ]^2 - [ b^3 ]^2
Using identity :
[ a^2 - b^2 = ( a + b ) ( a - b ) ]
= [ ( 2a )^3 + b^3 ] [ ( 2a )^3 - b^3 ]
Using identity :
[ a^3 + b^3 = ( a + b ) ( a^2 + b^2 - ab )
= ( 2a + b ) { ( 2a )^2 + b^2 - 2a × b } [ ( 2a )^3 - b^3 ]
= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) [ ( 2a )^3 - b^3 ]
Using identity :
[ a^3 - b^3 = ( a - b ) ( a^2 + b^2 + ab )
= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) ( 2a - b ) [ ( 2a )^2 + b^2 + 2a × b ]
= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) ( 2a - b ) ( 4a^2 + b^2 + 2ab )
Arranging the terms ,
= ( 2a + b ) ( 2a - b ) ( 4a^2 + b^2 - 2ab ) ( 4a^2 + b^2 + 2ab )
Hope it helps !!
Here is your solution :
= 64(a)^6 - (b)^6
= ( 2 )^6 ( a )^6 - ( b )^6
Using identity :
[ a^m × b^m = ( ab )^m ]
= ( 2a )^6 - ( b )^6
= [ ( 2a )^3 ]^2 - [ b^3 ]^2
Using identity :
[ a^2 - b^2 = ( a + b ) ( a - b ) ]
= [ ( 2a )^3 + b^3 ] [ ( 2a )^3 - b^3 ]
Using identity :
[ a^3 + b^3 = ( a + b ) ( a^2 + b^2 - ab )
= ( 2a + b ) { ( 2a )^2 + b^2 - 2a × b } [ ( 2a )^3 - b^3 ]
= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) [ ( 2a )^3 - b^3 ]
Using identity :
[ a^3 - b^3 = ( a - b ) ( a^2 + b^2 + ab )
= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) ( 2a - b ) [ ( 2a )^2 + b^2 + 2a × b ]
= ( 2a + b ) ( 4a^2 + b^2 - 2ab ) ( 2a - b ) ( 4a^2 + b^2 + 2ab )
Arranging the terms ,
= ( 2a + b ) ( 2a - b ) ( 4a^2 + b^2 - 2ab ) ( 4a^2 + b^2 + 2ab )
Hope it helps !!
Anonymous:
If you spot any mistake , plz.. make me aware of that.
Answered by
1
Answer:
hey mate!
the answer with step by step solution is in the above attachment
Attachments:
Similar questions