Math, asked by meenatiwari173, 5 months ago

Factorise the following
9x^2 - 12xy + 4y^2​

Answers

Answered by EliteZeal
65

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • 9x² - 12xy + 4y²

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Factorise it

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Let us firstly observe an algebraic identity

 \:\:

➠ (a - b)² = a² + b² - 2ab ⚊⚊⚊⚊ ⓵

 \:\:

To factorise a expression we firstly need to check weather it could be expressed in form of any algebraic identity

 \:\:

Going back to the question , 9x² - 12xy + 4y²

 \:\:

If we look towards the question and ask ,

 \:\:

  • Is 9 the square of any number
  • Is 4 the square of any number

 \:\:

We would get the results as ,

 \:\:

  • 9 the square of 3
  • 4 the square of 2

 \:\:

So , the question can be simplified as ,

 \:\:

➜ (3x)² - 12xy + (2y)²

 \:\:

Further the above expressing could be written as ,

 \:\:

➜ (3x)² - 2(6)xy + (2y)² ⚊⚊⚊⚊ ⓶

 \:\:

Comparing ⓵ & ⓶

 \:\:

We get ,

 \:\:

  • a = 3x
  • b = 2y
  • 2ab = 2(6xy)

 \:\:

So it can be factorise as ,

 \:\:

➜ (3x - 2y)²

 \:\:

Or,

 \:\:

➨ (3x - 2y)(3x - 2y)

 \:\:

Additional information

 \:\:

Some more algebraic identity

 \:\:

  • (a + b)² = a² + 2ab + b²

  • (a – b)2 = a² – 2ab + b²

  • a² – b² = (a + b)(a – b)

  • (x + a)(x + b) = x² + (a + b)x + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a – b)³ = a³ – b³ – 3ab(a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)

 \:\:

Similar questions