Math, asked by anushkasinghparte242, 1 month ago

factorise the following.
(a + b)² – (a - b)²​

Answers

Answered by sekharsuneet
1

4ab

Step-by-step explanation:

a^2 + b^2 + 2ab -(a^2+ b^2 -2ab)

a^2 + b^2 + 2ab -a^2 -b^2 + 2ab

a^2-a^2 +b^2 -b^2 +2ab + 2ab

4ab

Answered by Anonymous
8

Answer:

  • Factorise value is 4ab.

Step-by-step explanation:

As we know that,

 \:  \:  \sf \rightarrow \:  {(a + b)}^{2}  =  {(a)}^{2}  +  {(b)}^{2}  + 2ab

 \:  \:  \sf \rightarrow \:  {(a - b)}^{2} =  {(a)}^{2}   +  {(b)}^{2}  - 2ab

Now after knowing the formula let's find the factorise value

According to the question,

 \:  \:  \sf \:  {(a + b)}^{2}  -  {(a - b)}^{2}  \\  \\  \:  \:  \sf \: ( {a}^{2}  +  {b}^{2}  + 2ab) - ( {a}^{2}  +  {b}^{2}  - 2ab) \\  \\  \:  \:  \sf \:  {a}^{2}  +  {b}^{2}  + 2ab - {a}^{2}   -  {b}^{2}   +  2ab \\  \\  \:  \:  \sf \:   \cancel{a}^{2}   -  \cancel {a}^{2}  +  \cancel {b}^{2}  -  \cancel {b}^{2}  + 2ab + 2ab \\  \\  \:  \: \sf  \dagger \: \therefore \: 4ab

Similar questions