Science, asked by LoveLuster, 4 months ago

factorise the following:-



plz don't spam_/!\_


otherwise strictly report!!-_-​

Attachments:

Answers

Answered by Anonymous
4

x^4 + 4

Adding and subtracting 4x^2, we get

x^4+ 4x^2- 4x^2+ 4

= (x^2 + 2)^2. - (2x)^2

= (x^2 + 2x + 2)(x^2 - 2x + 2)

As a^2 - b^2 = (a+b)(a-b)

hope helpful :-)

Answered by BawliBalika
86

To Factorise:

x⁴ + 4

Solution:

\sf{x^4 + 4}

\sf{\implies(x^2 + 2)^2 -2(x^2)(2)\:\:\: [ ∵ (a + b)^2 = a^2 + b^2 + 2ab]}

\implies\sf{(x^2 + 2)^2 - 4x^2}

{\boxed{\sf{\red{here, a = x^2, b = 2}}}}

\sf{\implies(x^2 +2)^2 - (2x)^2 \:\:\: [ ∵ (a^2 - b^2 = (a + b)(a - b)]}

\implies\sf{( x^2 + 2 + 2x)(x^2 + 2 - 2x)}

\implies\sf\underline\purple{(x^2 + 2x + 2)(x^2 - 2x + 2)}

\sf\underbrace\color{green}{more\: information}

\rightarrow\sf{ (a + b)^2 = a^2 + b^2 + 2ab}

\rightarrow\sf{(a - b)^2 = a^2 + b^2 - 2ab}

\rightarrow\sf{a^2 - b^2 = (a + b)(a - b)}

\rightarrow\sf{ a^2 + b^2 = (a + b)^2 - 2ab}

\rightarrow\sf{2(a^2 + b^2) = (a + b)^2 + (a - b)^2}

Similar questions