Math, asked by michaelgimmy, 9 months ago

Factorise the Following -
27 {p}^{3}  -  \frac{1}{216}  -  \frac{9}{2}  \:  {p}^{2}  +  \frac{1}{4} \: p
CLUE -
use \: the \: identity \:  > (x - y) {}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy \: (x - y)
Give a Correct Step-by-step Explanation:

REFERENCE -
Class 9 - NCERT - Mathematics - Polynomials - EXERCISE 2.5 - Main. 8 - (v)

❌ PLEASE DON'T SPAM❌​

Answers

Answered by tuinkalsharma11
2

Answer:

27p³-1/216-9/2p²+1/4p

(3p)³ - (1/6)³ - 3×3p×1/6×3p + 3×3p×1/6×1/6

(3p-1/6)³

Step-by-step explanation:

By using the identity

(x-y)³=-y³-3xy(x-y)

=-y³-3x²y+3xy²

Hopefully it's helpful.

Answered by prince5132
10

GIVEN :-

  • 27 p³ - 1/216 - 9/2 p² + 1/4 p.
  • (x - y)³ = x³ - y³ - 3x²y + 3xy².

TO FACTORISE :-

  • 27 p³ - 1/216 - 9/2 p² + 1/4 p.

FACTORISATION :-

 \\ :  \implies \displaystyle \sf \: 27p ^{3}  -  \dfrac{1}{216}  -  \dfrac{9}{2} p ^{2}  +  \dfrac{1}{4} p \\  \\  \\

 :  \implies \displaystyle \sf \:(3p) ^{3}  -  \bigg( \dfrac{1}{6}  \bigg) ^{3}  - 3 \times (3p) ^{2}  \times  \dfrac{1}{6}  + 3 \times 3p \times  \bigg( \dfrac{1}{6}  \bigg) ^{2}  \\  \\  \\

 \bigstar \displaystyle \sf \:identity \to (x - y) ^{3}  = x ^{3}  - y^{3}  - 3x ^{2} y + 3xy ^{2}  \\  \\  \\

 :  \implies \displaystyle \sf \: \bigg(3p -  \dfrac{1}{6}  \bigg) ^{3}  \\  \\  \\

 :  \implies \displaystyle \sf \:\bigg(3p -  \dfrac{1}{6}  \bigg)\bigg(3p -  \dfrac{1}{6}  \bigg)\bigg(3p -  \dfrac{1}{6}  \bigg) \\  \\

 \therefore \underline{\displaystyle \sf required\ Answer \ is \ \bigg(3p -  \dfrac{1}{6}  \bigg)^{3}}

Similar questions