Math, asked by maneeshb289, 5 months ago


Factorise the given expression
44(P4 - 5P3 - 24P2) - 11P(P - 8)​

Answers

Answered by MaheswariS
20

\textbf{Given:}

\mathsf{44(P^4-5P^3-24P^2)-11P(P-8)}

\textbf{To find:}

\textsf{Factors of the given polynomial}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{44(P^4-5P^3-24P^2)-11P(P-8)}

\mathsf{=44P^2(P^2-5P-24)-11P(P-8)}

\mathsf{=44P^2(P^2-8P+3P-24)-11P(P-8)}

\mathsf{=44P^2(P(P-8)+3(P-8))-11P(P-8)}

\mathsf{=44P^2(P-8)(P+3)-11P(P-8)}

\mathsf{=11P(P-8)[4P(P+3)-1]}

\mathsf{=11P(P-8)(4P^2+12P-1)}

\textbf{Answer:}

\mathsf{44(P^4-5P^3-24P^2)-11P(P-8)=11P(P-8)(4P^2+12P-1)}

\textbf{Find more:}

Answered by babulalchowdary01
5

Answer:

4p(p+3)

Step-by-step explanation:

Similar questions