Factorise the given expression and divide that indicated
39n3(50n2-98)÷26n2(5n-7)
Answers
Answered by
9
Step-by-step explanation:
Hello , dear friend.
here is Ur solution.._______★
Sol.
39 {y}^{3} (50 {y}^{2} - 98) \: divide \: \: by \: \: 26 {y}^{2} (5y + 7)39y
3
(50y
2
−98)divideby26y
2
(5y+7)
_________________________________
= > 50 {y}^{2} - 98 = 2(25 {y}^{2} - 49)=>50y
2
−98=2(25y
2
−49)
=> 2[(5y)²-(7)²]
=> 2[(5y-7)(5y-7)]
\begin{gathered} = > \frac{39 {y}^{3}(50 {y}^{2} - 98) }{26 {y}^{2}(5y + 7) } \\ \\ = > \frac{3 \times 13 \times y \times y \times y \times 2 \times (5y - 7) \times (5y + 7)}{2 \times 13 \times y \times y \times (5y + 7)} \\ \\ = > \frac{3 \times y \times (5y - 7)}{1} \end{gathered}
=>
26y
2
(5y+7)
39y
3
(50y
2
−98)
=>
2×13×y×y×(5y+7)
3×13×y×y×y×2×(5y−7)×(5y+7)
=>
1
3×y×(5y−7)
Thus, 39y³(50y²-98) / 26y²(5y+7) = 3y(5y-7)
answer is 3y(5y-7)
Hope it's helps you.
☺☺☺☺
please mark me brainliest
Similar questions