Math, asked by mundhevarshara8, 4 months ago

Factorise the given expression and divide that indicated
39n3(50n2-98)÷26n2(5n-7)​

Answers

Answered by kcsshweta
9

Step-by-step explanation:

Hello , dear friend.

here is Ur solution.._______★

Sol.

39 {y}^{3} (50 {y}^{2} - 98) \: divide \: \: by \: \: 26 {y}^{2} (5y + 7)39y

3

(50y

2

−98)divideby26y

2

(5y+7)

_________________________________

= > 50 {y}^{2} - 98 = 2(25 {y}^{2} - 49)=>50y

2

−98=2(25y

2

−49)

=> 2[(5y)²-(7)²]

=> 2[(5y-7)(5y-7)]

\begin{gathered} = > \frac{39 {y}^{3}(50 {y}^{2} - 98) }{26 {y}^{2}(5y + 7) } \\ \\ = > \frac{3 \times 13 \times y \times y \times y \times 2 \times (5y - 7) \times (5y + 7)}{2 \times 13 \times y \times y \times (5y + 7)} \\ \\ = > \frac{3 \times y \times (5y - 7)}{1} \end{gathered}

=>

26y

2

(5y+7)

39y

3

(50y

2

−98)

=>

2×13×y×y×(5y+7)

3×13×y×y×y×2×(5y−7)×(5y+7)

=>

1

3×y×(5y−7)

Thus, 39y³(50y²-98) / 26y²(5y+7) = 3y(5y-7)

answer is 3y(5y-7)

Hope it's helps you.

☺☺☺☺

please mark me brainliest

Similar questions