Math, asked by APARNAPANDEY4323, 2 months ago

factorise the polynomial x^3+8y^3+64z^3-24xyz

Answers

Answered by 9102385222skp
0

Step-by-step explanation:

we can solve it by using identity

a cube+b cube+c cube- 3abc

Attachments:
Answered by Anonymous
2

Answer:

 \sf \: x^3−8y^3−64z^3−24xyz \\  \\\sf \: a^3+b^3+c^3−3abc \\ \\  \sf=(a+b+c) \\ \\\sf(a^2+b^2+c^2−ab−bc−ca)

Comparing with the expression of standard formulae,

Here,

 \sf \: a=x \\  \\  \sf \: b=−2y \\  \\ \sf \: c=−4z \\  \\ \sf \: Therefore, \\  \\\sf=>x^3+(−2y)^3+(−4z)^3−3(x) \sf(−2y)(−4z) \\  \\  \sf=(x−2y−4z) \\  \\\sf(x^2+4y^2+16z^2+2xy−8yz+4xz)

Similar questions