factorise using appropriate identity
Attachments:
Answers
Answered by
6
4x²-8x+4-4y²
=> (4x²-8x+4)-4y²
=> [(2x)²+(2)²-2(2x)(2)]-(2y)²
=> using identity (a²+b²-2ab) = (a-b)²
=> (2x-2)²-(2y)²
=> using identity a²-b² = (a+b)(a-b)
=> (2x-2+2y)(2x-2-2y)
=> [2(x-1+y)][2(x-1-y)]
=> 4(x+y-1)(x-y-1)
hope this helps
=> (4x²-8x+4)-4y²
=> [(2x)²+(2)²-2(2x)(2)]-(2y)²
=> using identity (a²+b²-2ab) = (a-b)²
=> (2x-2)²-(2y)²
=> using identity a²-b² = (a+b)(a-b)
=> (2x-2+2y)(2x-2-2y)
=> [2(x-1+y)][2(x-1-y)]
=> 4(x+y-1)(x-y-1)
hope this helps
saiyammbbhd6:
sorry appropriate proerty using wrong answer
Answered by
2
Heya user
Here is your answer !!
____________
( a - b )^2 = a^2 - 2ab + b^2
and
a^2 - b^2 = ( a - b )( a + b )
Now ,factorising the term ,
4x^2 - 8x + 4 - 4y^2
= { ( 2x )^2 - ( 2 × 2x × 2 ) + ( 2 )^2 } - 4y^2
= ( 2x - 2 )^2 - ( 2y )^2
= ( 2x - 2 - 2y ) ( 2x - 2 + 2y )
= 2 * 2 ( x - 1 - y ) ( x - 1 + y )
= 4 ( x - 1 - y ) ( x - 1 + y ) . [ Answer ] .
____________
Hope it helps !!
Here is your answer !!
____________
( a - b )^2 = a^2 - 2ab + b^2
and
a^2 - b^2 = ( a - b )( a + b )
Now ,factorising the term ,
4x^2 - 8x + 4 - 4y^2
= { ( 2x )^2 - ( 2 × 2x × 2 ) + ( 2 )^2 } - 4y^2
= ( 2x - 2 )^2 - ( 2y )^2
= ( 2x - 2 - 2y ) ( 2x - 2 + 2y )
= 2 * 2 ( x - 1 - y ) ( x - 1 + y )
= 4 ( x - 1 - y ) ( x - 1 + y ) . [ Answer ] .
____________
Hope it helps !!
Similar questions