Math, asked by binalbaria, 1 month ago

Factorise using factor theorem:x² + 4x-5 (iii) y2-2y-15​

Answers

Answered by Anonymous
17

Step-by-step explanation:

(1)

 {x}^{2}  + 4x - 5 \\  {x}^{2}  + 5x - x - 5 \\ x(x + 5) \:  - 1(x + 5) \\ (x + 5) \: (x - 1) \\  \\ x =  - 5 \:  \:  \:  \:  \:  \:  \:  \:  \: x = 1

(2)

 {y}^{2}  - 2y - 15 \\  {y}^{2}  - 5y + 3y - 15 \\ y(y - 5) \:  + 3(y - 5) \\ (y - 5) \:  \: (y + 3) \\  \\ y = 5 \:  \:  \:  \:  \:  \:  \:  \: y =  - 3

Answered by Mysteryboy01
0

1) \:  \:  \:  {x}^{2}  + 4x - 5

 =  {x}^{2}  + (5 - 1)x - 5

 =  {x}^{2}  + 5x - x - 5

 = x(x + 5) - 1(x + 5)

 = (x - 1)(x + 5)

2) \:  \:  \:  {y}^{2}  - 2y - 15

 =  {y}^{2}  - (5 - 3)y - 15

 =  {y}^{2}  - 5y + 3y - 15

 = y(y - 5) + 3(y - 5)

 = (y - 5)(y + 3)

Similar questions