factorise using identity 27x3 + 125y3
Answers
______________________________
27x³+125y³=(3x)³+(5y)³
so
by using formula
x³+y³=(x+y)(x²-xy+y²)
(3x+5y)(9x²-15xy+25y²)
hope dis help
27x³ + 125y³ = (3x + 5y)(9x² - 15xy + 25y²)
Given :
The expression 27x³ + 125y³
To find :
To factorise using identity
Identity Used :
a³ + b³ = (a + b)(a² - ab + b²)
Solution :
Step 1 of 2 :
Write down the given expression
The given expression is
27x³ + 125y³
Step 2 of 2 :
Factorise the expression
We use the identity
a³ + b³ = (a + b)(a² - ab + b²)
Thus we get
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
Find the value of the expression a² – 2ab + b² for a = 1, b = 1
https://brainly.in/question/28961155
2. to verify algebraic identity a2-b2=(a+b)(a-b)
https://brainly.in/question/10726280
Given:
An algebraic expression 27x³ + 125y³.
To Find:
The factorized form of the given expression is?
Solution:
The given problem can be solved using standard algebra expansions.
1. The given expression is 27x³ + 125y³.
2. The expression x³ -y³ can be written as
- (x³ + y³) = ( x + y )( x² - x y + y² ).
3. Use the above formula to expand the given expression.
=> 27x³ + 125y³ = 3³x³ + 5³y³,
=> 3³x³ + 5³y³ = (3x+5y)(9x² - 3x * 5y + 25y²),
=> 3³x³ + 5³y³ = (3x+5y)(9x² - 15x y + 25y²),
4. The expansion of 27x³ + 125y³ is (3x+5y)(9x² - 15x y + 25y²).
Therefore, the factorization of 27x³ + 125y³ is (3x+5y)(9x² - 15x y + 25y²).