factorise:(x+1)(x+2)(x+3)(x+4)-3 brainly
Answers
Answer:
Given,
==>(x+1) (x+2) (x+3) (x+4) -3=0
==>{(x+1)(x+4)}{(x+2)(x+3)}-3=0
==>(x²+5x+4) (x²+5x+6) -3=0
Let x²+5x be a. Then,
==>(a+4) (a+6) -3=0
==>(a²+10a+24)-3=0
==>a²+10a+21=0
==>a²+7a+3a+21=0
==>a(a+7) +3(a+7) =0
==>(a+7) (a+3) =0
==>a= -7 or a= -3
==>x²+5x= -7 or x²+5x= -3
==>x²+5x+7=0 or x²+5x+3=0
Consider: x²+5x+7=0 (x²=a, 5x=b, 7=c)
Discrimination=D=b²-4ac = [(5x) ²-4(x²) (7)]
=(25x²-28x²) = -3x²<0
So, it can't be factorise .
Consider,(x²+5x+3) =0
By using Quadratic Formula:
=> x = {-5±√5²-4(1) (3)}/2(1)
=>x = (-5±√13) /2
Then, the factors are:
{x-(√5+13) /2} {x-(√5-13) /2} [Ans]
Hope it's beneficial...
Step-by-step explanation:
(x+1) (x+2)(x+3) (x+4) --15
( x+1)(x+4) = x^2 +5x +4:
(x+2) (x+3) = x^2 +5x+6
Now let us put x^2 + 5x+4 = m
The given problem is in terms of m
m (m+2) --15
m^2 +2m --15
Factoriese
m^2 +5m --3m --15
m (m+5) -3 ( m+5)
(m +5) (m--3)
Now factoriise
m+5 = x^2+5x+4+5 = x^2+5x+9
m-3 = x^2+5x+4 --3 = x^2+5x+1
(x^2+5x+9) (x^2 +5x +1) are the factors