Math, asked by kartikbhoriya6873, 2 months ago

Factorise x^2 + 1/x^2 =98, then find the value of x^3 + 1/x^3

Answers

Answered by Anonymous
20

Given

 \to \sf \bigg( {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \bigg) = 98

To Find

 \to  \sf\bigg( {x}^{3}  +  \dfrac{1}{ {x}^{3} }  \bigg)

We Know that

 \sf \to(a + b) {}^{2}  =  {a}^{2}  + b {}^{2}  + 2ab

So We can write as

  \sf \to\bigg(x +  \dfrac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}

 \sf \to\bigg(x +  \dfrac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2

 \sf \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{2}  = 98 + 2

 \sf \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{2}  = 100

 \sf \to \bigg(x +  \dfrac{1}{x}  \bigg) ^{}  = 10

Now we have to find

\to  \sf\bigg( {x}^{3}  +  \dfrac{1}{ {x}^{3} }  \bigg)

Use this identities

 \sf \to(a + b)^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

We get

 \sf \to \:  \bigg(x +  \dfrac{1}{x}  \bigg) ^{3}  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3 \times x \times  \dfrac{1}{x}  \bigg(x +  \dfrac{1}{x}  \bigg)

 \sf \to(10) {}^{3}  =  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + 3 (10)

 \sf \to \: 1000 =  {x}^{3}  +  \dfrac{1}{ {x}^{3} } + 30

\sf \to \: 1000  - 30=  {x}^{3}  +  \dfrac{1}{ {x}^{3} }

\sf \to \:   {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 970

Answer

\sf \to \:   {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = 970

Answered by BrainlyMan05
19

Answer:

x^3+1/x^3 = 970

Step-by-step explanation:

Correct Question:

If x^2 + 1/x^2 =98, then find the value of x^3 + 1/x^3.

Identities involved:

  1. (a+b)^2 = a^2+b^2+2ab
  2. a^3+b^3 = (a+b)(a^2+b^2-ab)

Solution:

First, we should use the first identity:

➽ (x+1/x)^2 = x^2+(1/x)^2+2x(1/x)

➽ (x+1/x)^2 = 98+2

➽ (x+1/x)^2 = 100

➽ x+1/x = √100

➽ x+1/x = 10

Now, use the second identity:

x^3+1/x^3 = (x+1/x)(x^2+1/x^2 - x(1/x))

➽ x^3+1/x^3 = (10)(98-1)

➽ x^3+1/x^3 = (10)(97)

➽ x^3+1/x^3 = 970

Conclusion:

The value of x^3+1/x^3 is 970.

Similar questions