Math, asked by Minimoni, 10 months ago

factorise x^2 - 10x + 21 = 0 using quadratic formula​

Answers

Answered by GGcharan
3

Step-by-step explanation:

hope it is helpful

Mark as brainliest!!!!

Attachments:
Answered by InfiniteSoul
3

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 - 10x + 21 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = -6

☯ c = -27

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (-10)^2 - 4 \times 1 \times 21

\sf\implies D = 100 - 84

\sf\implies D = 16

\sf{\underline{\boxed{\blue{\large{\bold{ D = 16}}}}}}

⠀⠀⠀⠀⠀⠀⠀

putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( -10)  \pm\sqrt {16} }{2\times 1 }

\sf\implies x = \dfrac{ 10 \pm 4 }{2}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ 10 + 4 }{ 2 }

\implies x =  \dfrac {14}{2}

\implies x = 7

\sf{\underline{\boxed{\purple{\large{\bold{ x = 7 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ 10 - 4 }{ 2 }

\implies x =  \dfrac {6}{2}

\implies x = 3

\sf{\underline{\boxed{\purple{\large{\bold{ x = 3 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = 7 \: or \: 3 }}}}}}

Similar questions