Math, asked by Anaishakushwah, 11 months ago

Factorise
(X^2+4)-2a-a^2-5

Answers

Answered by HimashreeAcharya
0

Answer:

(x+a+1) (x-a+1)

Step-by-step explanation:

(x^2+4) -2a-a^2-5

  • opening the bracket x^2+4-2a-a^2-5
  • x^2-a^2-2a-1
  • taking x^2 ans - common
  • x^2-(a^2+2a+1)
  • x^2-(a+1)^2
  • (x)^2-(a+1)^2
  • as they are in a^2 - b^2 form
  • so then ans is (x+a+1) ( x-a+1)...

I think this will help u solve it

Answered by pulakmath007
0

( x² + 4 ) - 2a - a² - 5 = (x + a + 1)(x - a - 1)

Given :

The expression ( x² + 4 ) - 2a - a² - 5

To find :

To factorise the expression

Formula :

  • (a + b)² = a² + 2ab + b²

  • a² - b² = ( a + b ) ( a - b )

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

( x² + 4 ) - 2a - a² - 5

Step 2 of 2 :

Factorise the expression

 \sf ( {x}^{2}  + 4) - 2a -  {a}^{2}  - 5

 \sf  =  {x}^{2}  + 4 - 2a -  {a}^{2}  - 5

 \sf  =  {x}^{2}   - 2a -  {a}^{2}  - 1

 \sf  =  {x}^{2}    -  ({a}^{2}  + 2a + 1)

 \sf  =  {x}^{2}    -  ({a}^{2}  + 2.a .1+  {1}^{2} )

 \sf  =  {x}^{2}    -  {(a + 1)} ^{2}   \:   \:  \bigg[\:  \because \:  {a}^{2}  + 2ab +  {b}^{2}  =  {(a + b)}^{2}  \bigg]

 \sf  = (x + a + 1)(x - a - 1)\:   \:  \bigg[\:  \because \:  {a}^{2}   -   {b}^{2}  = (a + b)(a  -  b)  \bigg]

∴ ( x² + 4 ) - 2a - a² - 5 = (x + a + 1)(x - a - 1)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

Similar questions